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ABSTRACT

For hyperbolic conservation laws, the famous Lax–Wendroff theorem delivers sufficient conditions for
the limit of a convergent numerical method to be a weak (entropy) solution. This theorem is a funda-
mental result, and many investigations have been done to verify its validity for finite difference, finite
volume, and finite element schemes, using either explicit or implicit linear time-integration methods.

Recently, the use of modified Patankar (MP) schemes as time-integration methods for the discretization
of hyperbolic conservation laws has gained increasing interest. These schemes are unconditionally
conservative and positivity-preserving and only require the solution of a linear system. However, MP
schemes are by construction nonlinear, which is why the theoretical investigation of these schemes is
more involved.

In this talk, we give a brief introduction to Patankar-type methods in the context of hyperbolic conser-
vation laws and present the main ideas of proving a variant of the Lax–Wendroff theorem adding an
hypothesis on the total time variation next to the classical total variation (in space) that Lax–Wendroff
requires. This extension allows us, for the first time, to establish a theory of their convergence in the
context of partial differential equations. The theoretical results are validated through numerical tests
for different conservation laws.
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