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ABSTRACT

This talk invites the audience to consider a class of models with high order derivatives as
hyperbolic models whose solutions are sought within a linear subspace. First we motivate
this framework by describing a general strategy to derived approximate models of the
water waves problem. Then we delve deeper into this mathematical structure and highlight
some mathematical properties. Finally, by preserving this structure at the discrete level,
we develop robust and efficient numerical schemes.

The projected hyperbolic models

We focus on hyperbolic models with source term

∂tU +A (U) ∂xU = −Ψ (1)

where U ∈ RdU , Ψ ∈ RdU and A ∈ MdU (R) with real eigenvalues. The source term Ψ is
not explicitly described, but acts to ensure that the solution remains in a linear subspace

kerL for a given application L :
(
L2 (R)

)dU 7→
(
L2 (R)

)dQ . More specifically, the source

term Ψ is on the dual space kerR = (kerL)⊥ such that a Helmholtz decomposition occurs.

Link with the dispersive approximations of the water waves model

Most of the approximate models of the water waves problem can be written under the
projected hyperbolic form (1), such as the Korteweg–de Vries, Benjamin-Bona-Mahony
and Camassa-Holm models ; the Green-Naghdi and other Boussinesq-type models, and
the more complexe dispersive models with several velocities [1, 2]. More precisely, the
approximate models can be recovered from a variational formulation of the water waves
problem applying a Discontinuous Galerkin vertical discretization of the horizontal velocity
which naturally leads to a projected hyperbolic model.

Advantages of the structure for numerical schemes

In a second time, some exemple taken advantage of the projection structure to design
robust and efficient numerical schemes will be given. More precisely, by using a splitting
between the hyperbolic part and the dispersive source term, the first step reads

Un∗ = Un − δtA (Un) ∂xU
n (2)

that can be solved using classical hyperbolic solver. The second step is nothing more than
the Helmholtz decomposition, i.e.

Un+1 = Un∗ − δtΨ
n+1

with L
(
Un+1

)
= 0 and R

(
Un+1

)
= 0

(3)



which highlight the importance to preserve the duality of the operators L and R at the
discrete level to ensure this step well-posed, and the dissipation of the L2-norm is ensured.
It is worth noting that the Helmholtz decomposition (3) is the most expensive part of the
scheme. To reduce this cost, we propose two strategies.

The first is to use high-order scheme. The drawback of Runge-Kutta time schemes is the
call of the Helmholtz decomposition (3) at each sub-time steps. Fortunately, following the
case of the incompressible flow [3], the dispersive source term can be treated as a time
dependent source term, reconstruct from the previous approximations, the Helmholtz de-
composition being performed only at the last iteration. This strategy has beed successfully
employed for the Green-Naghdi model in [4].

Most of the time and in most areas, the first hyperbolic step (2) gives a good approximation
of the result. The second strategy is based on the resolution of the source term Ψ only
where and when it is needed. To do so, we first propose a coupling strategy preserving the
projection structure [5]. This strategy can also be used to treat discontinuous source terms,
like discontinuous bathymetry, and impose practical boundary conditions. In a second
time, we propose a a priori criterium selecting the model to minimize the numerical cost.
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