High order schemes on Voronoi-like tessellations: space-time control volumes around topology changes and multidimensional Riemann solvers

Elena Gaburro

University of Verona, Italy (elena.gaburro@univr.it)

Joint work with: M. Klima, M. Bonafini, S. Chiocchetti, M. Ricchiuto and M. Dumbser

ABSTRACT

The framework of this work is that of high order Finite Volume and Discontinuous Galerkin methods for solving hyperbolic equations on unstructured polygonal and polyhedral tessellations constructed as centroid-based dual of Delaunay meshes.

First, I will concentrate on the treatment of topology changes in the case of direct Arbitrary-Lagrangian-Eulerian (ALE) schemes on Voronoi meshes which are regenerated at each time-step and that should be connected via space-time control volumes[5, 4]. Unfortunately, just linking the existing elements, by collapsing or expanding their edges, leaves a *hole* in the space-time. Thus, we fill this hole by considering an additional *space-time degenerate hole-like element* that we call *sliver* element.

Here, I will describe the shape and the numerical treatment of a sliver element in the 2D+time framework with a direct ALE ADER Discontinuous Galerkin method. Then, I will justify the *stability* of our approach applied to sliver elements by presenting a von Neumann stability analysis performed in the 1D+time setting at the aid of a fictitious 1D+time sliver element [2]. Finally, I will show preliminary novel results about sliver elements in 3D+time: their degenerate *4D hole-like* shape will be fully characterized and various visualization strategy will be proposed [1].

Furthermore, I will present two novel complete genuinely multidimensional Riemann solvers [3] that benefit from the Voronoi tessellations and are extended to the high order of accuracy thanks to a CWENO-ADER algorithm. The first is a direct extension of the Osher-Solomon Riemann solver via integration of the dissipation term over manifolds and ii) the second is based on the so-called N-scheme, an optimal upwind flux originally developed for residual distribution methods.

References

- [1] M. Klima, E. Gaburro. "High order treatment of topology changes on 3D Voronoi-like tessellation via 4D hole-like sliver elements.", *in preparation*, 2025.
- [2] M. Bonafini, E. Gaburro, D. Torlo "Stability analysis for explicit and implicit ADER Discontinous Galerkin methods in the Eulerian and Lagrangian framework including degenerate Italia elements", *in preparation*, 2025.
- [3] E. Gaburro, M. Ricchiuto, M. Dumbser. "On general and complete multidimensional Riemann solvers for nonlinear systems of hyperbolic conservation laws.", *submitted*, 2025.
- [4] E. Gaburro. "A Unified Framework for the Solution of Hyperbolic PDE Systems Using High Order Direct Arbitrary-Lagrangian–Eulerian Schemes on Moving Unstructured Meshes with Topology Change". *Archives of Computational Methods in Engineering*, 2021.
- [5] E. Gaburro, W. Boscheri, S. Chiocchetti, C. Klingenberg, V. Springel, M. Dumbser. "High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes". *Journal of Computational Physics*, 2020.

E. Gaburro gratefully **acknowledges** the support received from the European Union with the ERC Starting Grant *ALcHyMiA* (grant agreement No. 101114995).